locallA1Degree(L, p)
Given an endomorphism of affine space $f=(f_1,\dots ,f_n) \colon \mathbb{A}^n_k \to \mathbb{A}^n_k$ and an isolated zero $p\in V(f)$, we may compute its local $\mathbb{A}^1$-Brouwer degree valued in the Grothendieck-Witt ring $\text{GW}(k)$.
For historical and mathematical background, see global A1-degrees.
|
|
|
|
|
|
|
|
The sum of the local A1-degrees is equal to the global A1-degree:
|
The object getLocalA1Degree is a method function.
The source of this document is in /build/reproducible-path/macaulay2-1.25.06+ds/M2/Macaulay2/packages/A1BrouwerDegrees/Documentation/LocalGlobalDegreesDoc.m2:95:0.