Macaulay2 » Documentation
Packages » Permutations :: trim
next | previous | forward | backward | up | index | toc

trim -- rewrites a permutation in its smallest representation

Description

trim rewrites a permutation $p$ as a permutation in $S_n$, where $n$ is the smallest integer such that $p$ is in $\mathfrak{S}_n$. In other words, it returns a permutation where any extraneous fixed points are removed.

i1 : p = permutation {3,1,2,5,4,6,7}

o1 = Permutation{3, 1, 2, 5, 4, 6, 7}

o1 : Permutation
i2 : trim p

o2 = Permutation{3, 1, 2, 5, 4}

o2 : Permutation

See also

Ways to use trim:

  • trim(Ideal) -- see trim -- minimize generators and relations
  • trim(Module) -- see trim -- minimize generators and relations
  • trim(MonomialIdeal) -- see trim -- minimize generators and relations
  • trim(Permutation)
  • trim(QuotientRing) -- see trim -- minimize generators and relations
  • trim(Ring) -- see trim -- minimize generators and relations

For the programmer

The object trim is a method function with options.


The source of this document is in /build/reproducible-path/macaulay2-1.25.06+ds/M2/Macaulay2/packages/Permutations/Documentation/mainDocs.m2:797:0.