getHasseWittInvariant(beta, p)
The Hasse-Witt invariant of a diagonal form $\langle a_1,\ldots,a_n\rangle$ over a field $K$ is defined to be the product $\prod_{i<j} \left(a_i,a_j\right)_p $ where $(-,-)_p$ is the Hilbert symbol.
The Hasse-Witt invariant of a form will be equal to 1 for almost all primes. In particular, after diagonalizing a form $\beta \cong \left\langle a_1,\ldots,a_n\right\rangle$ the Hasse-Witt invariant at a prime $p$ will be 1 automatically if $p\nmid a_i$ for all $i$. Thus we only have to compute the Hasse-Witt invariant at primes dividing diagonal entries.
|
|
The object getHasseWittInvariant is a method function.
The source of this document is in /build/reproducible-path/macaulay2-1.25.06+ds/M2/Macaulay2/packages/A1BrouwerDegrees/Documentation/GWInvariantsDoc.m2:59:0.